Abstract
The actual regenerative braking force of an integrated starter/generator (ISG), which is varied with desired braking deceleration and vehicle speed, is calculated based on an analysis of the required deceleration, maximum braking force of ISG, engine braking force and state of charge (SOC) of battery. Braking force distribution strategies are presented according to the actual regenerative braking force of ISG. To recover the vehicle’s kinetic energy maximally, braking shift rules for a mild hybrid electric vehicle (HEV) equipped with automatic manual transmission (AMT) are brought forward and effects of transmission ratios are considered. A test-bed is built up and regenerative braking tests are carried out. The results show that power recovered by the braking shift rules is more than that recovered by the normal braking control rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.