Abstract
The human peptide GHK (glycyl-l-histidyl-l-lysine) has multiple biological actions, all of which, according to our current knowledge, appear to be health positive. It stimulates blood vessel and nerve outgrowth, increases collagen, elastin, and glycosaminoglycan synthesis, as well as supports the function of dermal fibroblasts. GHK’s ability to improve tissue repair has been demonstrated for skin, lung connective tissue, boney tissue, liver, and stomach lining. GHK has also been found to possess powerful cell protective actions, such as multiple anti-cancer activities and anti-inflammatory actions, lung protection and restoration of chronic obstructive pulmonary disease (COPD) fibroblasts, suppression of molecules thought to accelerate the diseases of aging such as NFκB, anti-anxiety, anti-pain and anti-aggression activities, DNA repair, and activation of cell cleansing via the proteasome system. Recent genetic data may explain such diverse protective and healing actions of one molecule, revealing multiple biochemical pathways regulated by GHK.
Highlights
The human copper-binding peptide GHK-Cu is a small, naturally occurring tri-peptide present in human plasma that can be released from tissues in case of an injury
GHK-Cu applied to thigh skin for 12 weeks improved collagen production in 70% of the women treated, in contrast to 50% treated with the vitamin C cream, and 40% treated with retinoic acid [16]
GHK-Cu increased production of nerve growth factor and the neurotrophins NT-3 and NT-4, sped up the regeneration of nerve fibers from nerve stubs placed in a collagen tube, and increased axon count and proliferation of Schwann cells compared to the control group [29]
Summary
The human copper-binding peptide GHK-Cu (glycyl-L-histidyl-L-lysine) is a small, naturally occurring tri-peptide present in human plasma that can be released from tissues in case of an injury. The Broad Institute of MIT and Harvard (Cambridge, MA, USA) has created the Connectivity Map—a publicly available library of transcriptional responses to known perturbagens, substances that modulate gene expression [3]. This tool allowed researchers to investigate genome-wide effects of GHK and establish that GHK-Cu is able to up- and down-regulate a significant number of human genes. The present paper reviews protective and regenerative actions of the GHK-Cu peptide in human skin, as well as new gene data, revealing possible mechanisms behind these actions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.