Abstract

In bullfrog B-type sympathetic neurones axon injury produces substantial changes in somal membrane properties. These include a shortening of action potential afterhyperpolarization (AHP) and an increase in action potential (AP) duration. In the present experiments we compared two injury situations: nerve crush, which was followed by regeneration, and nerve cut, after which regeneration to the original target was prevented, to investigate whether these electrophysiological changes were related to axon regeneration. Both crush and cut injuries produced a similar maximum decrease in AHP duration (to 33 and 30%) by 14 days after axotomy. After nerve crush, AHP duration recovered to within control values by 42 days, while after cut it remained depressed. AHP amplitude decreased to the same extent after nerve crush or cut (to 62 and 58%), but the rate of decrease was slower following crush when compared with cut, and following both types of injury it still remained depressed at 42 and 49 days. Changes in AP duration also took longer to occur following nerve crush, reaching maximal values at 35-42 days, at which time AHP duration had returned to within the normal range. The early reduction in AHP duration and its rapid recovery in regenerating neurones suggests that the current underlying this membrane property is regulated by events associated with axon outgrowth and peripheral reconnection. In contrast, changes in AHP amplitude and AP repolarization appeared to be independent of the occurrence of axon regeneration and remained abnormal at 49 days despite the recovery of AHP duration. These results imply that the electrophysiological changes seen in B-cells following injury are differentially regulated during subsequent regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.