Abstract

Successful tree regeneration is essential for sustainable forest management, yet it can be limited by the interaction of harvesting effects and multiple ecological drivers. In northern hardwood forests, for example, there is uncertainty whether low-intensity selection harvesting techniques will result in adequate and desirable regeneration. Our research is part of a long-term study that tests the hypothesis that a silvicultural approach called “structural complexity enhancement” (SCE) can accelerate the development of late-successional forest structure and functions. Our objective is to understand the regeneration dynamics following three uneven-aged forestry treatments with high levels of retention: single-tree selection, group selection, and SCE. Regeneration density and diversity can be limited by differing treatment effects on or interactions among light availability, competitive environment, substrate, and herbivory. To explore these relationships, manipulations and controls were replicated across 2 ha treatment units at two Vermont sites. Forest inventory data were collected pre-harvest and periodically over 13 years post-harvest. We used mixed effects models with repeated measures to evaluate the effect of treatment on seedling and sapling density and diversity (Shannon–Weiner H’). The treatments were all successful in recruiting a sapling class with significantly greater sapling densities compared to the controls. However, undesirable and prolific beech (Fagus americana) sprouting dominates some patches in the understory of all the treatments, creating a high degree of spatial variability in the competitive environment for regeneration. Multivariate analyses suggest that while treatment had a dominant effect, other factors were influential in driving regeneration responses. These results indicate variants of uneven-aged systems that retain or enhance elements of stand structural complexity—including old-growth characteristics—can generally foster abundant regeneration of important late successional tree species depending on site conditions, but they may require beech control where beech sprouting inhibits desired regeneration.

Highlights

  • Forest management for old-growth characteristics provides an important opportunity to help mitigate the effects of climate change, while providing many social, economic, and ecological benefits

  • There are a number of old-growth attributes indicative of stand structural complexity in northern hardwoods that could be promoted through retention forestry [8,9,10,11]

  • Our research investigates the question of whether a silvicultural practice promoting old-growth characteristics, termed “Structural Complexity Enhancement (SCE),” can regenerate desirable tree species and establish a new cohort of saplings at sufficient densities to be sustainable in comparison to conventional uneven-aged prescriptions

Read more

Summary

Introduction

Forest management for old-growth characteristics provides an important opportunity to help mitigate the effects of climate change, while providing many social, economic, and ecological benefits. There are a number of old-growth attributes indicative of stand structural complexity in northern hardwoods that could be promoted through retention forestry [8,9,10,11]. These include greater availability of large downed and standing woody debris (snags), large trees, tip-up mounds, horizontal variation in stand density (e.g., gaps of varying sizes and shapes), vertically complex canopies, and advanced regeneration [2,12,13]. We are interested in whether the regeneration responses are influenced by other sources of variability, such as herbivory, substrate, light intensity, and climate, that might interact with treatment effects

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.