Abstract

We studied regeneration patterns of three tree species Picea ajanensis, Betula platyphylla and Populus tremula from 1998 to 2000 in the Central Depression of the Kamchatka Peninsula. We paid special attention to the contribution of sprouting to their regeneration. P. ajanensis was the only species that regenerated by seedling. In a 40 × 40 m study plot, the density of P. ajanensis saplings < 2.0 cm in diameter at basal area (DBH) was 1132, and this was the highest among the three species studied. The number of saplings ≥ 2 cm in DBH declined sharply with size class. The spatial distribution of P. ajanensis saplings (< 2 cm in DBH) showed a significant positive correlation with that of adult trees and a negative correlation with that of gaps. These trends were not changed after re-measurement in 2000, although nearly half of the juveniles had died or been injured during the two years. These results suggest that small Picea saplings prefer habitats under the canopy of adult trees rather than in gaps for establishment. Most small individuals of B. platyphylla were produced from sprouts. The number of saplings in the smallest size class (< 2 cm in DBH) was much less than that of P. ajanensis, although the number of larger individuals did not decrease remarkably. The spatial distribution of B. platyphylla saplings showed a positive correlation with that of adult trunks and a negative correlation with that of canopy trees of P. ajanensis. These results suggest an effective contribution of sprouts to the regeneration of B. platyphylla. P. tremula was the only species that could invade big gaps and produce many root suckers efficiently. There were 181 suckers of P. tremula in the smallest size class (< 2 cm in DBH) in the study plot, although the number of saplings ≥ 2 cm in DBH declined abruptly. The spatial distribution of saplings of this species showed a slight positive correlation with that of gaps, and negative correlation with that of adult trees of B. platyphylla, P. ajanensis, and P. tremula. The root suckering strategy of P. tremula might be adaptive under severe conditions in high-latitude regions. Our data suggest, however, that it does not necessarily contribute to regeneration in mature forests. The three component species in this forest did not seem to utilize canopy gaps for regeneration; we suggest that gap dynamics do not work in this forest. The sparse canopy, which is a typical character of forests in high-latitude regions, might be a consequence of high mortalities of seedlings and root suckers inside gaps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call