Abstract

This study assessed the regeneration status of tree species at different elevations in Himalayan forests. For this purpose, we assessed the densities of seedlings, saplings, and adult trees of various forest-forming species to understand their population structure and regeneration patterns. Five elevational ranges—<2000, 2000–2500, 2500–3000, 3000–3500, and >3500 m above sea level—were selected in various ranges in the Bhagirathi River catchment area in the Garhwal Himalaya. The highest species richness was recorded at the lowest elevational range, and the lowest species richness was recorded at the highest elevational range. Species diversity, measured using the Simpson and Shannon–Wiener diversity indices, was highest at the lowest elevations and lowest at the highest elevations. Abies spectabilis, Cedrus deodara, Rhododendron arboreum, Pinus roxburghii, and Quercus oblongata were dominant and widely adapted with appropriate regeneration potential at various elevations, whereas Aesculus indica, Juglans regia, and Sorbus cuspidata showed less ability to regenerate, indicating a threat to their survival in the near future. Tree species of subalpine forests Abies pindrow, A. spectabilis, Acer acuminatum, Betula utilis, and R. arboreum were observed to expand their upper limits into alpine meadows. Weak regeneration by some dominant tree species, and expansion by a few less-dominant or even rare species, indicate likely future compositional changes in Himalayan forests.

Highlights

  • It is important to understand how evolution and the ecological potential of life forms help them to adapt to climate change (Woodward and Kelly 2008), because Himalayan forests are heavily influenced by climate change (Polanski et al 2014; Chakraborty et al 2018)

  • Changes in species composition, distribution, diversity, and community structure along elevational gradients have been well documented (Guo et al 2013; Sharma et al 2017, 2018), regeneration dynamics have been insufficiently quantified to date, such data are crucial to assess the role of climate change and species shift in high-mountain forests (Sharma et al 2014)

  • A. spectabilis has shown wider ecological amplitude at high elevations (3000–3675 masl; Sharma et al 2017) with good regeneration ability and coexistence with other species (Table 1) and is recommended as a prized tree species for higher elevations in the Garhwal Himalaya

Read more

Summary

Introduction

It is important to understand how evolution and the ecological potential of life forms help them to adapt to climate change (Woodward and Kelly 2008), because Himalayan forests are heavily influenced by climate change (Polanski et al 2014; Chakraborty et al 2018). Forest structure and composition in the Himalayan region are mainly driven by elevation and climate (Vetaas 2000; Sharma, Mishra, et al 2016b; Sharma et al 2017, 2018), and future changes in climate are projected to cause changes in vegetation distribution (Gao et al 2017). Geographical and climatic conditions change sharply (Bandopadhyay 2016) This generates diverse vegetation structures and high species diversity (Chawla et al 2008). Changes in species composition, distribution, diversity, and community structure along elevational gradients have been well documented (Guo et al 2013; Sharma et al 2017, 2018), regeneration dynamics have been insufficiently quantified to date, such data are crucial to assess the role of climate change and species shift in high-mountain forests (Sharma et al 2014)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call