Abstract
Insertion of foreign DNA into plant genomes frequently results in the recovery of transgenic plants with silenced transgenes. To investigate to what extent regeneration under selective conditions limits the recovery of transgenic plants showing gene silencing in woody species, Mexican lime [ Citrus aurantifolia (Christm.) Swing.] plants were transformed with the p25 coat protein gene of Citrus tristeza virus (CTV) with or without selection for nptII and uidA. Strikingly, more than 30% of the transgenic limes regenerated under non-selective conditions had silenced transgenes, and in all cases silencing affected all the three transgenes incorporated. These results indicate that the frequency of transgene silencing may be greatly underestimated when the rate of silencing is estimated from the number of regenerants obtained under selective conditions. To our knowledge, this is the first report in which the frequency of gene silencing after transformation has been quantified. When the integration pattern of T-DNA was analyzed in silenced and non-silenced lines, it was observed that inverted repeats as well as direct repeats and even single integrations were able to trigger gene silencing. Gene silencing has often been associated with the insertion of DNA sequences as inverted repeats. Interestingly, here, direct repeats and single-copy insertions were found in both silenced and non-silenced lines, suggesting that the presence of inverted-repeat T-DNAs and the subsequent formation of dsRNAs triggering gene silencing cannot account for all silencing events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.