Abstract

Introduction: The repair process of severed peripheral nerves is conducted by the bridging of the regenerating neural fibers across a gap in the case of the existence of an appropriate route (space) between the proximal and distal severed stumps. The current study aimed to improve the transected sciatic nerve of rats with a 10 mm gap by means of applying electrospun conduits composed of polymer nanocomposites of polyglycolic acid (PGA), collagen, and nanobioglass (NBG). Then, the efficacy of the designed conduits (PGA/collagen/NBG, PGA/collagen, and PGA alone) was histologically and electrophysiologically compared with autograft nerves to determine whether these conduits have superiority over the autograft procedures in the process of nerve regeneration.Materials and Methods: In this experiment, 50 healthy adult male Wistar rats underwent sciatic nerve transection. After four, eight, and 12 weeks of the surgical procedures, the therapeutic effects of conduits on sensory and motor recovery of transected nerves were evaluated.Results: The analysis of the functions of motor and sensory nerves showed marked improvement in rats treated with PGA/collagen/NBG conduit. Also, histological staining and immunohistochemical assessment of the expression of NF200, S100, and CD31 proteins revealed newly-formed nerve fibers with micro blood vessels at the proximity of regenerated nerve fibers.Conclusions: It seems that due to the high surface area of electrospun nerve conduits to adhere the cells, the application of these compounds would be beneficial in clinical practice in the future. The results suggest that PGA/Collagen/NBG nanofibrous conduit possesses the highest capability in increasing nerve regeneration following nerve transection in murine models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.