Abstract

The production of ammonia through electrocatalytic nitrogen reduction reaction (NRR) is environmentally friendly and energy-saving, but it still suffers from the low NH3 yield rate and poor selectivity. Herein, enlightened by the unique solubility of Fe3O4 in deep eutectic solvent (DES), we, for the first time, reported a DES-based regeneration strategy to fabricate porous Fe3O4 nanosheets utilizing commercial Fe3O4 powder as raw materials. The as-regenerated porous Fe3O4 nanosheets exhibited satisfactory electrocatalytic performance toward NRR, affording a NH3 yield rate of 12.09 μg h−1 mg−1cat along with an outstanding Faradaic efficiency (FE) of 34.38% at −0.1 V versus reversible hydrogen electrode (RHE), in the 0.1 M Na2SO4 electrolyte. The superior electrocatalytic activity of the as-regenerated Fe3O4 nanosheets mainly resulted from their unique sheet-like morphology with large active surface area, high porosity, and abundant oxygen vacancies. Our proposed DES-based regeneration strategy opens a new avenue for the construction of high-performance electrocatalyst from commercial raw materials, holding great promise in NRR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.