Abstract

Procedures have been developed for the initiation and long-term maintenance of embryogenic suspension cultures of pickling cucumber (Cucumis sativus) cultivar Endeavor and for the regeneration of normal plantlets. Embryogenic calluses from petiole explants plated on Murashige and Skoog (MS) medium with 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BA), both at 5µM, were used to initiate the embryogenic suspension cultures. Among various growth regulator combinations evaluated for initiation and maintenance of these suspension cultures, only MS medium with 2,4-D and BA, both at 1µM, produced cultures that were yellow, friable, and still regenerable after repeated subculture (every two wk) over a 3- to 15-mo. period. The effects of various concentrations of auxin and cytokinin in the plating medium, the addition of AgNO3, and various plating procedures were also evaluated. The highest frequency of regeneration of shoots and plantlets was achieved by plating aggregates onto filter paper overlaid on MS medium with naphthalene acetic acid (NAA)/BA at a concentration of 2:1 or 1:1µM. The addition of activated charcoal (0.5%) or AgNO3 (30µM) in the plating medium did not enhance the frequency of plantlet regeneration. The highest frequency of normal-appearing plantlets recovered was 42 to 46% per petri dish. The procedures described in this study can be used to increase plantlet recovery from individual embryogenic calluses of pickling cucumber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.