Abstract

Soil disturbance often results in loss of soil organic matter and nitrogen (N) fertility, making revegetation of barren areas difficult. Yard waste composts are a potential source material to regenerate soil fertility so that revegetation success is improved. The N release behaviors of several compost materials produced within California were evaluated during a long-term, 586-day aerobic incubation. Two general types of compost were tested, including yard waste compost materials (lawn clippings and chipped brush) and cocomposted materials (biosolids bulked and composted with yard waste materials). Nitrogen release from composted material was measured using periodic soil solution extraction and soluble N analysis. Nitrogen release rates varied widely between source materials during the initial portions of the incubation period, with cocomposts having much greater release rates than the yard waste composts. Yard waste composts that were poorly cured or had high woody fiber content showed net immobilization of N during the initial incubation periods, which could potentially lead to N-limitations for plant growth in field conditions. Following additional curing in the soil, however, all yard waste compost materials had positive net N mineralization release rates. Release rates were similar to some of the native soils used as reference materials. The relationship of long-term aerobic N release and several other indicators of mineralizable or “bioavailable” N were evaluated, but the relationship of these other indicators with the aerobic incubation data was low. Because the cumulative N release from yard waste compost materials was a small fraction of the material's total N content, N leaching losses in field conditions are expected to be small and of short duration. Steady, long-term N release patterns were observed from composts throughout the second half of the study and would be expected to continue for an extended period in the field. Composts are shown to provide a suitable replacement source of slowly available N for plant establishment on drastically disturbed, low nutrient soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.