Abstract

We propose and demonstrate a Mach–Zehnder Interferometer (MZI)-based optical neural network (ONN) to classify and regenerate a four-level pulse-amplitude modulation (PAM4) signal with high inter-symbol interference (ISI) generated experimentally by a silicon microing modulator (SiMRM). The proposed ONN has a multiple MZI configuration achieving a transmission matrix that resembles a fully connected (FC) layer in a neural network. The PAM4 signals at data rates from 160 Gbit/s to 240 Gbit/s (i.e., 80 GBaud to 120 GBaud) were experimentally generated by a SiMRM. As the SiMRM has a limited 3-dB modulation bandwidth of ~67 GHz, the generated PAM4 optical signal suffers from severe ISI. The results show that soft-decision (SD) forward-error-correction (FEC) requirement (i.e., bit error rate, BER < 2.4 × 10−2) can be achieved at 200 Gbit/s transmission, and the proposed ONN has nearly the same performance as an artificial neural network (ANN) implemented using traditional computer simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call