Abstract
The use of warm-mix recycling technology can reduce the mixing temperature and the secondary aging of binders in reclaimed asphalt pavement (RAP), which is one of the effective ways to recycle high-content RAP. In this study, the penetration, softening point, ductility, and viscosity were used to characterize the conventional physical properties of aged asphalt after regenerating, while a dynamic shear rheometer (DSR), force ductility tester (FDT), and atomic force microscope (AFM) were used to evaluate the rheological performance and micro-morphology of aged asphalt incorporating a new bio-based warm-mix rejuvenator (BWR) and a commercial warm-mix rejuvenator (ZJ-WR). The regeneration mechanism of warm-mix rejuvenators on aged asphalt was analyzed by Fourier transform infrared spectroscopy (FTIR). The results show that the new bio-based warm-mix rejuvenator can restore the conventional physical properties, low-temperature performance, and micro-morphology of aged asphalt with an appropriate dosage, but it has a negative effect on high-temperature performance. In comparison with 2D area parameters, 3D roughness parameters were more accurate in evaluating the variation in micro-morphology of aged asphalt after regeneration. The FTIR analysis results indicate that both the new bio-based warm-mix rejuvenator and the commercial warm-mix rejuvenator regenerate aged asphalt by physical action, and AS=O and AC-H values are more reasonable than the AC=O value for the restoration evaluation of aged asphalt. And the new bio-based warm-mix rejuvenator has a better regeneration effect on the performance and micro-morphology of aged asphalt than the commercial warm-mix rejuvenator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.