Abstract

Chemically induced epidermal carcinogenesis is often divided into two stages: initiation, which involves the conversion of some epidermal cells into latent neoplastic cells, and promotion, which allows the evolution of this neoplastic change into the formation of a neoplasm. The hallmark of epidermal tumor promotion is the transformation of the normal epidermis into a hyperplastic epidermis. A major unanswered question about epidermal tumor promotion is whether the epidermal hyperplasia that characterizes promoted skin is a regenerative epidermal hyperplasia resulting from damage produced by the promoter. The opinion currently held is that the epidermal hyperplasia produced by tumor promoters is not simply a regenerative epidermal hyperplasia and possesses characteristics which a regenerative hyperplasia does not have, enabling it to evolve into an epidermal neoplasm. The purpose of this review is to present recent evidence which strongly suggests that promoter-induced epidermal hyperplasia is a regenerative hyperplasia. Three principal lines of evidence are reviewed. The first demonstrates that an epidermal regenerative hyperplasia repeatedly produced by wounding or abrasion can promote epidermal carcinogenesis in the initiated skin of mice. The second line of evidence demonstrates that the epidermal hyperplasia produced by the application of 12-O-tetradecanoyl-phorbol-13-acetate (TPA), the most powerful and widely used promoter of skin carcinogenesis, is preceded by damage to the epidermis. This strongly suggests that the epidermal hyperplasia which ensues is a regenerative hyperplasia. Thirdly, evidence is presented which demonstrates that hyperplasia-producing agents which do not promote, produce an epidermal hyperplasia which is different from that produced by tumor promoters. Finally, the review discusses the evidence which suggests that the production of a hyperplasia may be the mechanism for tumor promotion in other organs, such as the liver, bladder, and intestine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call