Abstract

Microbial extracellular polymeric substances (EPS) have gained increasing attention for various water treatment applications. In this study, EPS produced from nitrogen-limited glycerol/ethanol-rich wastewater were used to recover Cu2+ and Pb2+ from aqueous solutions. Continuous flow-through tests were conducted on a column packed with silica gel coated with polyethyleneimine, to which EPS were irreversibly attached as shown by optical reflectometry. These immobilised EPS excellently adsorbed Cu2+ and Pb2+, with 99.9% of influent metal adsorbed before the breakthrough points. Metal desorption was achieved with 0.1M HCl, with an average recovery of 86% for Cu2+ and 90% recovery for Pb2+. For the first time, we successfully showed the possibility to regenerate and reuse the immobilised EPS for five adsorption-desorption cycles (using Cu2+ as an example) with no reduction in the adsorbed amount at the breakthrough point (qbp). Based on the mass balance of the associated metal ions participating in the adsorption process, ion exchange was identified as the major mechanism responsible for Cu2+ and Pb2+ adsorption by EPS. The results demonstrate the potential of wastewater-produced EPS as an attractive and perhaps, cost-effective biosorbent for heavy metal removal (to trace effluent concentrations) and recovery (86–99%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.