Abstract
AbstractA seaweed‐waste material resulting from the processing of Ascophyllum nodosum was previously shown to be very efficient at removing Zn(II), Ni(II) and Al(III) both in single and multi‐metal waste streams. In this study, the regeneration of the biosorbent using an acid wash resulted in the release of high metal concentrations during multiple desorption cycles. Maximum desorption efficiencies (DE) of 183, 122 and 91% were achieved for Zn(II), Ni(II) and Al(III), respectively, for subsequent metal loading cycles, significantly exceeding the desorption rates observed for conventional sorbents. The regeneration of the sorbent was accomplished with very little loss in metal removal efficiency (RE) for both single and multi‐metal systems. Values of 92, 96 and 94% RE were achieved for Zn(II), Ni(II) and Al(III), respectively, for the 5th sorption cycle in single metal aqueous solutions. A slight decrease was observed for the same metals in multi‐metal systems with maximum REs of 85, 82 and 82% for Zn(II), Ni(II) and Al(III), respectively. This study showed that the novel sorbent derived from a seaweed industrial waste would be suitable for multiple metal sorption cycles without any significant loss in RE.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.