Abstract

The bis-(diethyldithiocarbamate)-copper (CuET), the disulfiram (DSF)-Cu complex, has exhibited noteworthy anti-tumor property. However, its efficacy is compromised due to the inadequate oxidative conditions and the limitation of bioavailable copper. Because CuET can inactivate valosin-containing protein (VCP), a bioinformatic pan-cancer analysis of VCP is first conducted in this study to identify CuET as a promising anticancer drug for diverse cancer types. Then, based on the drug action mechanism, a nanocomposite of CuET and copper oxide (CuO) is designed and fabricated utilizing bovine serum albumin (BSA) as the template (denoted as CuET-CuO@BSA, CCB). CCB manifests peroxidase (POD)-mimicking activity to oxidize the tumor endogenous H2O2 to generate reactive oxygen species (ROS), enhancing the chemotherapy effect of CuET. Furthermore, the cupric ions released after enzymatic reaction can regenerate CuET, which markedly perturbs intracellular protein homeostasis and induces apoptosis of tumor cells. Meanwhile, CCB triggers cuproptosis by inducing the aggregation of lipoylated proteins. The multifaceted action of CCB effectively inhibits tumor progression. Therefore, this study presents an innovative CuET therapeutic strategy that creates an oxidative microenvironment in situ and simultaneously self-supply copper source for CuET regeneration through the combination of CuO nanozyme with CuET, which holds promise for application of CuET for effective tumor therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.