Abstract

AbstractConstruction of environment‐friendly biomass‐based nanocomposites with high performance is in great demand for developing of a sustainable low‐carbon society. Here, transparent and flexible regenerated cellulose (RC)/layered double hydroxide (LDH) nanocomposite films were prepared from aqueous NaOH/urea solutions. The obtained nanocomposite films were characterized using AFM, SEM, FTIR, XRD, tensile testing, water contact angle, and thermogravimetric analysis. The results show that LDH nanoplatelets were individually dispersed with a thickness of 1 nm and surface diameter of 100 nm after ultrasonic treatment. Strong interaction existed between LDH nanoplatelets and cellulose molecules, leading to the improved thermal stability and mechanical strength of RC together with the original good properties of LDH. In particular, the nanocomposite films with 10 wt% LDH showed a 135% and 234% increase in the tensile strength and Young's modulus than those of the neat RC film. Meanwhile, the nanocomposite films exhibited high transparency. Therefore, these RC/LDH nanocomposites are promising in the fields of high‐performance packaging materials, flexible display panels, and high‐temperature dielectric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call