Abstract

A novel granular carbon nanotubes (CNTs)/alumina (Al2O3) hybrid adsorbent with good sorption and regeneration properties was successfully prepared by mixing CNTs with surfactant Brij 35 and pseudo boehmite, followed by calcining to remove surfactant and form porous granules. Alumina binder increased the mechanical strength, hydrophilicity and porosity of the granular adsorbent, while the dispersed CNTs in the granular adsorbent were responsible for the sorption of diclofenac sodium (DS) and carbamazepine (CBZ). Scanning electron microscopy (SEM) showed that the CNTs and Al2O3 were mixed well and the porous structure was formed in the granular adsorbent. The high surface area and appropriate pore size of granular CNTs/Al2O3 adsorbent were favorable for sorption. The sorption of DS decreased with increasing solution pH, while pH had little effect on CBZ sorption. The maximum sorption capacities of CBZ and DS on the CNTs/Al2O3 adsorbent were 157.4 and 106.5 μmol/g according to the Langmuir fitting. Moreover, the spent CNTs/Al2O3 adsorbent can be thermally regenerated at 400 °C in air due to the thermal stability of CNTs. The removal of CBZ and DS changed a little in the initial reuse cycles and then kept relatively constant until tenth cycles. The adsorbed CBZ and DS were decomposed in the regeneration process. This regenerable adsorbent may find potential application in water or wastewater treatment for the removal of some micropollutants such as pharmaceuticals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call