Abstract
Styrene monooxygenase (SMO) is a two-component flavoenzyme composed of NADH-dependent flavin reductase (SMOB) and FAD-specific styrene epoxidase (NSMOA) components. The enantioselective styrene epoxidation reaction catalyzed by this enzyme can be streamlined for chemosynthetic applications by substituting NADH and the reductase with an electrode to supply the epoxidase with reducing equivalents required for catalysis. Slow kinetics of adsorption and desorption of FAD from the electrode surface and unproductive side reactions of the reduced flavin with oxygen limit the efficiency of direct electroenzymatic catalysis. In the present work we develop a miniature spectroelectrochemical cell equipped with a copper electrode for the anodic synthesis of Cu(I) chelates of EDTA, glutamate, and citrate as FAD-reducing agents, and a platinum electrode for the electrolytic generation of oxygen. Copper oxidized in the flavin reduction reaction can be reclaimed subsequently as copper metal at the electrode surface. About 80% transformation of styrene is achieved in a single cell cycle of reduction and oxygenation at pH 7 and 25 °C in good agreement with that predicted by numerical simulation. When the cell is operated in two successive cycles, styrene oxide can be synthesized with an electroenzymatic epoxidation activity of 663U/g in 94% yield. This approach to electroenzymatic catalysis shows promise for the quantitative transformation of styrene to styrene oxide and may be applied more generally to other flavoprotein monooxygenases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.