Abstract

Graph contrastive learning (GCL) has demonstrated remarkable efficacy in graph representation learning. However, previous studies have overlooked the inherent conflict that arises when employing graph neural networks (GNNs) as encoders for node-level contrastive learning. This conflict pertains to the partial incongruity between the feature aggregation mechanism of graph neural networks and the embedding distinction characteristic of contrastive learning. Theoretically, to investigate the location and extent of the conflict, we analyze the participation of message-passing from the gradient perspective of InfoNCE loss. Different from contrastive learning in other domains, the conflict in GCL arises due to the presence of certain samples that contribute to both the gradients of positive and negative simultaneously under the manner of message passing, which are opposite optimization directions. To further address the conflict issue, we propose a practical framework called ReGCL, which utilizes theoretical findings of GCL gradients to effectively improve graph contrastive learning. Specifically, two gradient-based strategies are devised in terms of both message passing and loss function to mitigate the conflict. Firstly, a gradient-guided structure learning method is proposed in order to acquire a structure that is adapted to contrastive learning principles. Secondly, a gradient-weighted InfoNCE loss function is designed to reduce the impact of false negative samples with high probabilities, specifically from the standpoint of the graph encoder. Extensive experiments demonstrate the superiority of the proposed method in comparison to state-of-the-art baselines across various node classification benchmarks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call