Abstract

Leukemia stem cells (LSCs) are self-renewable, leukemia-initiating populations that are often resistant to traditional chemotherapy and tyrosine kinase inhibitors currently used for treatment of acute or chronic myeloid leukemia. The persistence and continued acquisition of mutations in resistant LSCs represent a major cause of refractory disease and/or relapse after remission. Understanding the mechanisms regulating LSC growth and survival is critical in devising effective therapies that will improve treatment response and outcome. Several recent studies indicate that the p53 tumor suppressor pathway is often inactivated in de novo myeloid leukemia through oncogenic-specific mechanisms, which converge on aberrant p53 protein deacetylation. Here, we summarize our current understanding of the various mechanisms underlying deregulation of histone deacetylases (HDACs), which could be exploited to restore p53 activity and enhance targeting of LSCs in molecularly defined patient subsets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.