Abstract

It has become increasingly clear that protein-protein interactions (PPIs) are compartmentalized in nanoscale domains that define the biochemical architecture of the cell. Despite tremendous advances in super-resolution imaging, strategies to observe PPIs at sufficient resolution to discern their organization are just emerging. Here we describe a strategy in which PPIs induce reconstitution of fluorescent proteins (FPs) that are capable of exhibiting single-molecule fluctuations suitable for stochastic optical fluctuation imaging (SOFI). Subsequently, spatial maps of these interactions can be resolved in super-resolution in living cells. Using this strategy, termed reconstituted fluorescence-based SOFI (refSOFI), we investigated the interaction between the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and the pore-forming channel subunit ORAI1, a crucial process in store-operated Ca(2+) entry (SOCE). Stimulating SOCE does not appear to change the size of existing STIM1/ORAI1 interaction puncta at the ER-plasma membrane junctions, but results in an apparent increase in the number of interaction puncta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call