Abstract

Motivated by the challenge of computer refrigeration, we study the limits set by the transition to quantum turbulence on the cooling of an array of heat-producing cylindrical nanosystems by means of superfluid-helium counterflow. The effective thermal conductivity in laminar counterflow superfluid helium is obtained in channels with rectangular cross section, through arrays of mutually parallel cylinders and in the combined situation of arrays of orthogonal cylinders inside the rectangular channel. The maximum cooling capacity is analyzed on the condition that turbulence is avoided and that the highest temperature does not exceed the lambda temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.