Abstract

Reuse of learnt knowledge is of critical importance in the majority of knowledge-intensive application areas, particularly because the operating context can be expected to vary from training to deployment. Dataset shift is a crucial example of this where training and testing datasets follow different distributions. However, most of the existing dataset shift solving algorithms need costly retraining operation and are not suitable to use the existing model. In this paper, we propose a new approach called reframing to handle dataset shift. The main objective of reframing is to build a model once and make it workable without retraining. We propose two efficient reframing algorithms to learn the optimal shift parameter values using only a small amount of labelled data available in the deployment. Thus, they can transform the shifted input attributes with the optimal parameter values and use the same existing model in several deployment environments without retraining. We have addressed supervised learning tasks both for classification and regression. Extensive experimental results demonstrate the efficiency and effectiveness of our approach compared to the existing solutions. In particular, we report the existence of dataset shift in two real-life datasets. These real-life unknown shifts can also be accurately modeled by our algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.