Abstract

Because the operating frequency of a magnetron has a direct relationship to the size of the resonant structure, the power at a given frequency that can be obtained from a magnetron may be limited by the temperature which the resonating structure can withstand. A rise in the temperature of the resonant structure is caused by the impact of high-energy electrons emitted from the cathode at high peak-power levels for short durations. This paper deals with the analytical determination of the temperature of the resonant structure, a solution to the heat problem in which a thin coating of refractory metal is used to prevent the vulnerable components from melting, and some experimental results to verify the analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.