Abstract

An optical wing is a cambered rod that experiences a force and torque owing to the reflection and transmission of light from the surface. Here we address how such a wing may be designed to maintain an efficient thrust from radiation pressure (RP) while also providing a torque that returns the wing to a source facing orientation. The torsional stiffness of two different wing cross-sections is determined from numerical ray-tracing analyses. These results demonstrate the potential to construct a passive sun-tracking, space flight system or a microscopic surface measurement device based on RP force and torque.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call