Abstract
Precise measurement of the refractive index of stable silicon isotopes $^{28}$Si, $^{29}$Si, $^{30}$Si single crystals with enrichments above 99.9 at.% and a silicon single crystal $^{nat}$Si of natural isotopic composition is performed with the Fourier-transform interference refractometry method from 1.06 to more than 80 mkm with 0.1 cm$^{-1}$ resolution and accuracy of $2 \times 10^{-5} ... 1 \times 10^{-4}$. The oxygen and carbon concentrations in all crystals are within $5 \times 10^{15}$ cm$^{-3}$ and the content of metal impurities is $10^{-5} ... 10^{-6}$ at.%. The peculiar changes of the refractive index in the phonon absorption region of all silicon single crystals are shown. The coefficients of generalized Cauchy dispersion function approximating the experimental refractive index values all over the measuring range are given. The transmission and Raman spectra are also studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.