Abstract

A plasmonic refractive index sensor based on surface plasmon polaritons (SPPs) that consist of metal–insulator–metal (MIM) waveguides and a whistle-shaped cavity is proposed. The transmission properties were simulated numerically by using the finite element method. The Fano resonance phenomenon can be observed in their transmission spectra, which is due to the coupling of SPPs between the transmission along the clockwise and anticlockwise directions. The refractive index-sensing properties based on the Fano resonance were investigated by changing the refractive index of the insulator of the MIM waveguide. Modulation of the structural parameters on the Fano resonance and the optics transmission properties of the coupled structure of two MIM waveguides with a whistle-shaped cavity were designed and evaluated. The results of this study will help in the design of new photonic devices and micro-sensors with high sensitivity, and can serve as a guide for future application of this structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.