Abstract
Guided mode resonances (GMRs) and bounded states in the continuum (BICs), both supported by dielectric gratings, can realize ultrahigh Q-factors and strong localized field enhancements, beneficial to high-performance sensing applications. In this paper, based on GMR theory and numerical simulations, we systematically investigate the relationship between different order GMRs and BICs/quasi-BICs in Si-based dielectric gratings with symmetric, singly, and doubly asymmetric profiles. The introduction of broken-symmetry in adjacent gaps or Si nanobeams brings about new GRM and symmetry-protected BIC and can transform the fundamental BIC into a resonant state with finite Q-factor as high diffraction orders. A Friedric-Wintgen BIC is also achieved under normal incidence by breaking symmetries of both gaps and Si nanobeams. Further, the asymmetric dielectric gratings with high Q-factor quasi-BICs are designed as a refractive index sensor. Although the Q-factor and localized electric field penetrating into the vacuum are greatly improved with the decreasing asymmetry parameter, the sensitivity is almost unchanged while the FOM demonstrates an inverse square dependence on the asymmetry parameter. To further improve the sensitivity, we construct an asymmetric dielectric grating with a low fill factor and a big period, which manifests an excellent sensing performance with a near theoretical sensitivity limit of ∼1506 nm/RIU and an ultrahigh FOM of ∼5000.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.