Abstract
Two-dimensional transition metal dichalcogenides are promising candidates for ultrathin light modulators due to their highly tunable excitonic resonances at visible and near-infrared wavelengths. At cryogenic temperatures, large excitonic reflectivity in monolayer molybdenum diselenide (MoSe2) has been shown, but the permittivity and index modulation have not been studied. Here, we demonstrate large gate-tunability of complex refractive index in monolayer MoSe2 by Fermi level modulation and study the doping dependence of the A and B excitonic resonances for temperatures between 4 and 150 K. By tuning the charge density, we observe both temperature- and carrier-dependent epsilon-near-zero response in the permittivity and transition from metallic to dielectric near the A exciton energy. We attribute the dynamic control of the refractive index to the interplay between radiative and non-radiative decay channels that are tuned upon gating. Our results suggest the potential of monolayer MoSe2 as an active material for emerging photonics applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.