Abstract

The effect that femtosecond laser filamentation has on the refractive index of Nd:YAG ceramics, and which leads to the formation of waveguide lasers, has been studied by micro-spectroscopy imaging, beam propagation experiments and calculations. From the analysis of the Nd3+ luminescence and Raman images, two main types of laser induced modifications have been found to contribute to the refractive-index change: (i) a lattice defect contribution localized along the self-focusing volume of the laser pulses, in which lattice damage causes a refractive-index decrease, and (ii) a lattice strain-field contribution around and inside the filaments, in which the pressure-driven variation of the inter-atomic distances causes refractive-index variations. Scanning near-field optical-transmission and end-coupling experiments, in combination with beam propagation calculations, have been used to quantitatively determine the corresponding contribution of each effect to the refractive-index field of double-filament waveguides. Results indicate that the strain-field induced refractive-index increment is the main mechanism leading to waveguiding, whereas the damage-induced refractive-index reduction at filaments leads to a stronger mode confinement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call