Abstract

Over the past decade, optical sensors have made significant advances. An optical sensor examines the environmental impact through the change of an optical signal and offers advantages such as low cost and label-free detection. In this study, a sensor consisting of a single graphene layer and a slit positioned on the substrate is proposed. The strip gap made to improve the excitation of graphene plasmons allowed to achieve 96.2% high transmission resonance mode. This demonstrates the ability of the sensor surface to detect changing environmental conditions. The results show that the sensitivity of the sensor is 6282 nm/RIU when the sensor surface is exposed to analytes with different refractive indices. The use of a single graphene sheet eliminates the need for a metal resonator and achieves a higher sensitivity compared to some experiments recently published in the literature. Thus, the disadvantage of significant ohmic losses in metal resonators is avoided. Furthermore, a thorough discussion of various factors, including the modification of the strip gap width on the graphene layer and electrical tunability, led to the achievement of optimal sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.