Abstract

The refractive index of potassium aluminosilicate glass of the KAlSi3O8 composition in the pressure range up to 6.0 GPa has been measured using a polarizing interference microscope and an apparatus with diamond anvils. The changes in the relative density, which characterize the compressibility of the K2O · Al2O3 · 6SiO2 glass, have been estimated in the pressure range under investigation from the measured refractive indices within the framework of the theory of photoelasticity. The results have been compared with the data previously obtained for the Na2O · Al2O3 · 6SiO2 glass. Although the molar contents of Al2O3 and M2O (where M = K or Na) are identical in these glasses, the KAlSi3O8 glass exhibits a higher compressibility, which agrees with the lower degree of depolymerization of this glass as compared to that observed in the NaAlSi3O8 glass. The pressure derivative of the bulk modulus K′t, which is calculated from the Birch-Murnaghan equation for the KAlSi3O8 glass (K′t = 7–9), is higher than that for the NaAlSi3O8 glass (K′t= 5.5–6.0). An increase in the pressure derivative of the bulk modulus K′t upon replacement of the Na+ cations by the K+ cations is explained by the inhibition of compression of the large K+ cations, which are located in cavities and have a considerably larger orbital radius than the Na+ cations. This manifests itself in the fact that the curves describing the dependences of the change in the relative density (d − d0)/d (compressibility) on the pressure P for the KAlSi3O8 and NaAlSi3O8 glasses converge at pressures above 4.0 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.