Abstract

BackgroundA new procedure to correct myopia that does not disturb the cornea in the optical zone and avoids injuring the corneal epithelium could be a key advance in corneal refractive surgery. The aim of this study is to observe the refractive change in the adult rabbits undergoing femtosecond laser-assisted multilayer intrastromal ablation in the mid-periphery of the cornea without injury of epithelium.MethodThe right eyes of 8 New Zealand White adult rabbits were used for the experiments. A 60-kHz femtosecond laser delivery system was used, and three lamellar layers of laser pulses were focused starting at a corneal depth of 180 μm and ending at 90 μm from the surface, with each successive layer placed 45 μm anterior to the previous layer. In the interface of the applanation contact lens cone, a 6-mm diameter aluminum circle was placed at the center to block the laser, limiting ablation to the mid-periphery of the cornea. The laser settings were as follows: spot/line separation, 10 μm; diameter, 8.0 mm; energy for ablating the stroma, 1.3 μJ. An authorefractor was used to assess the manifest refraction.ResultsMean spherical equivalent (SE) (mean ± SD, SD: standard deviation) was significantly increased at postoperative week 1 (1.67 ± 0.26 D, p < 0.0001), month 1 (1.65 ± 0.23 D, p < 0.0001), and month 3 (1.60 ± 0.22 D, p < 0.0001) compared to baseline (0.68 ± 0.27 D). Mean spherical equivalent showed no significant change between postoperative week 1 and month 3 (p = 0.1168).ConclusionFemtosecond laser-assisted multilayer corneal intrastromal ablation in the mid-periphery may cause a consequent hyperopic shift with no refractive regression.

Highlights

  • A new procedure to correct myopia that does not disturb the cornea in the optical zone and avoids injuring the corneal epithelium could be a key advance in corneal refractive surgery

  • Mean spherical equivalent showed no significant change between postoperative week 1 and month 3 (p = 0.1168)

  • In a previous study [5], we demonstrated the morphological and histopathologic changes to the immature rabbit cornea after multi-layer ablation of the stroma with the femtoseond laser (FSL) at different depths in the midperiphery of the cornea, which may not have been definitive because of immaturity of the cornea

Read more

Summary

Introduction

A new procedure to correct myopia that does not disturb the cornea in the optical zone and avoids injuring the corneal epithelium could be a key advance in corneal refractive surgery. The aim of this study is to observe the refractive change in the adult rabbits undergoing femtosecond laser-assisted multilayer intrastromal ablation in the mid-periphery of the cornea without injury of epithelium. The cornea, the most important refractive element of the eye, supplies two thirds of the total refractive power and makes it an appealing target for most refractive surgical procedures, of which the ablative procedures such as photorefractive keratectomy (PRK), laser in situ keratomileusis (LASIK) and laser epithelial keratomileusis (LASEK) are based on corneal tissue removal, whereas the incisional procedures, such as radial keratotomy (RK), correct myopia by relaxing the corneal tissue. Too, FSL makes it possible to relax a cornea by ablating the midperipheral stroma without injuring the epithelium, with a potential refractive change occurring due to intraocular pressure. We present the refractive change in the adult rabbits undergoing this procedure

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.