Abstract

Refraction methods are often applied to model and image near-surface velocity structures. However, near-surface imaging is very challenging, and no single method can resolve all of the land seismic problems across the world. In addition, deep interfaces are difficult to image from land reflection data due to the associated low signal-to-noise ratio. Following previous research, we have developed a refraction wavefield migration method for imaging shallow and deep interfaces via interferometry. Our method includes two steps: converting refractions into virtual reflection gathers and then applying a prestack depth migration method to produce interface images from the virtual reflection gathers. With a regular recording offset of approximately 3 km, this approach produces an image of a shallow interface within the top 1 km. If the recording offset is very long, the refractions may follow a deep path, and the result may reveal a deep interface. We determine several factors that affect the imaging results using synthetics. We also apply the novel method to one data set with regular recording offsets and another with far offsets; both cases produce sharp images, which are further verified by conventional reflection imaging. This method can be applied as a promising imaging tool when handling practical cases involving data with excessively weak or missing reflections but available refractions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.