Abstract
Reversals in perceived direction of motion of a grating when its spatial frequency exceeds half that of the sampling mosaic provide a potential tool for estimating sampling frequency in peripheral retina. We used two-alternative forced-choice tasks to measure performance of three observers detecting or discriminating direction of motion of high contrast horizontal or vertical sinusoidal luminance gratings presented either 20 or 40 deg from the fovea along the horizontal meridian. A foveal target at a comfortable viewing distance aided fixation and accommodation. A Maxwellian view optometer with 3 mm artificial pupil was used to correct the refraction of the peripheral grating, which was presented in a circular patch, 1.8 deg in diameter, in a surround of similar colour and mean luminance (47.5 cd · m −2). The refractive correction at each eccentricity was measured by recording the aerial image of a point after a double pass through the eye. The highest frequency which can reliably be detected (7–14 c/deg at 20 deg, 5.5–7.5 c/deg at 40 deg) depends critically on refraction. Refraction differs by up to 5 D from the fovea to periphery, and by up to 6 D from horizontal to vertical. Direction discrimination performance shows no consistent reversals, and depends less on refraction. It falls to chance at frequencies as low as one-third of the highest that can be detected. Gratings which can be detected but whose direction of motion cannot be discriminated appear as irregular speckle patterns whose direction of motion varies from trial to trial. The absence of motion reversals may reflect irregularity of sampling, and suggests that reversals are not a simple tool for studying sampling in peripheral vision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.