Abstract

ABSTRACT The recent observation of the ultra-diffuse galaxy NGC 1052-DF2 shows a galaxy may lack dark matter, which becomes a challenge to the standard structure formation theory. Here, we show that such phenomena can be a natural consequence if the NGC 1052-DF2 had experienced a single passage within a few kpc to the centre of the galaxy NGC 1052. The tidal effect of NGC 1052 in the encounter will heat the NGC 1052-DF2, and stretch the previous dwarf galaxy significantly into its current size. The relative lack of dark matter in the observed region is a natural consequence of the dark matter limited total amount in the corresponding small central region before the encounter, together with a systematic underestimation of the trace mass estimator method during revirialization after the encounter. The observed flat distribution of the ultra-diffuse galaxy can be reproduced with a cored initial star profile, which is a major improvement compared with the previous work. Our results show no need for introducing any new physical mechanism, as well as an alternative origin of an ultra-diffuse galaxy without repeated pericentre passage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call