Abstract
Structural damage detection method based on modal strain energy usually requires information at every degree of freedom. Due to the limited number of sensors and the difficulty in measuring rotational vibration, modal expansion is often adopted to match the degrees of freedom between the analytical and experimental models, which introduces errors. A novel modal strain energy–based structural damage detection approach is proposed in which the elemental modal strain energy is reformulated with strain modes. The method is introduced on an Euler–Bernoulli beam with uniform cross section. Only strain data are adopted in the newly proposed method and no rotational information of the structure is required. The numerical simulations and experimental validations are conducted to demonstrate the effectiveness of the proposed method. The results show that the proposed method has a better performance than the modal strain energy–based structural damage detection approach with displacement mode and modal expansion technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.