Abstract
The bilevel programming problem is a static version of the Stackelberg's leader follower game in which Stackelberg strategy is used by the higher level decision maker called the leader given the rational reaction of the lower decision maker called the follower. The bilevel programming problem (BLPP) is a two-level hierarchical optimisation problem and is non-convex. This paper deals with finding links between the bilevel linear fractional/linear programming problem (BF/LP), the generalised linear fractional complementarity problem (GFCP) and mixed integer linear fractional programming problem (MIFP). The (BF/LP) is reformulated as a (GFCP) which in turn is reformulated as an (MIFP). The method is supported with the help of a numerical example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computing Science and Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.