Abstract

This paper concerns the application of reformulation techniques in mathematical programming to a specific problem arising in quantum chemistry, namely the solution of Hartree–Fock systems of equations, which describe atomic and molecular electronic wave functions based on the minimization of a functional of the energy. Their traditional solution method does not provide a guarantee of global optimality and its output depends on a provided initial starting point. We formulate this problem as a multi-extremal nonconvex polynomial programming problem, and solve it with a spatial Branch-and-Bound algorithm for global optimization. The lower bounds at each node are provided by reformulating the problem in such a way that its convex relaxation is tight. The validity of the proposed approach was established by successfully computing the ground-state of the helium and beryllium atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.