Abstract
Variational Level Set (LS) has been a widely used method in medical segmentation. However, it is limited when dealing with multi-instance objects in the real world. In addition, its segmentation results are quite sensitive to initial settings and highly depend on the number of iterations. To address these issues and boost the classic variational LS methods to a new level of the learnable deep learning approaches, we propose a novel definition of contour evolution named Recurrent Level Set (RLS) 1 to employ Gated Recurrent Unit under the energy minimization of a variational LS functional. The curve deformation process in RLS is formed as a hidden state evolution procedure and updated by minimizing an energy functional composed of fitting forces and contour length. By sharing the convolutional features in a fully end-to-end trainable framework, we extend RLS to Contextual RLS (CRLS) to address semantic segmentation in the wild. The experimental results have shown that our proposed RLS improves both computational time and segmentation accuracy against the classic variational LS-based method whereas the fully end-to-end system CRLS achieves competitive performance compared to the state-of-the-art semantic segmentation approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.