Abstract

AbstractMany different methods have been devised to solve the nonlinear systems of equations that model water distribution networks. Probably the most popular is Todini and Pilati’s global gradient algorithm (GGA). Given the GGA’s success, alternative methods have not aroused much interest. One example is the co-tree method, which requires some cumbersome steps in its implementation. In this paper, a reformulated co-trees method (RCTM) is presented that simplifies the procedure by manipulating the incidence matrix into trapezoidal form: a lower triangular block at the top representing a spanning tree and rectangular block below it representing the corresponding co-tree. This reordering leads to significant efficiencies that make the RCTM competitive with the GGA in certain settings. The new method has some similarities to the loop flows corrections formulation, and it is shown, by application to a set of eight case study networks with between 932 and 19,647 pipes and between 848 and 17,971 nodes, to be be...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.