Abstract

In this study, in vitro digestion of β-lactoglobulin (β-Lg) fibrils and the re-formation of fibril-like structures after prolonged enzymatic hydrolysis (up to 48 h) were investigated using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), thioflavin T fluorescence photometry, and transmission electron microscopy (TEM). Pure β-Lg fibrils that had been formed by heat treatment at pH 2.0 were rapidly hydrolyzed by pepsin in the simulated gastric fluid (pH 1.2), and some new peptides that were suitable for further fibril formation were produced. TEM showed that the new fibrils were long and straight but thinner than the original fibrils, and both TEM and MALDI-MS indicated that the peptides in the new fibrils were shorter/smaller than the peptides in the original fibrils. The formation of new fibrils was found to be affected more by pH than by enzyme activity or temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.