Abstract

We have developed a device that uses microfluidic valves and pumps to meter reagents for subsequent mixing with application to refolding of the protein β-galactosidase. The microfluidic approach offers the potential advantages of automation, cost-effectiveness, compatibility with optical detection, and reduction in sample volumes as opposed to conventional techniques of hand-pipetting or using robotic systems. The device is a multi-layered poly(dimethylsiloxane) on glass device with automated controls for reagent aliquoting and mixing. Refolding experiments have been performed off-chip using existing protocols on the protein β-galactosidase and the refolding yield has been quantified on-chip using fluorescein di-β-d-galactopyranoside, a caged-fluorescent molecule. This work provides the potential to reduce the cost of drug discovery and realization of protein pharmaceuticals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.