Abstract

Heparin-binding neurite-promoting factor (HBNF) is a highly basic, cysteine-rich 136-residue protein, and a member of a new class of heparin-binding proteins. It exhibits a neurite-outgrowth promoting activity and its expression is both temporally and spacially regulated during fetal and postnatal development. A high inter-species sequence conservation suggests important, presently unknown, biological functions. HBNF is structurally and most likely functionally related to the product of a developmentally regulated gene, MK (midkine). To elucidate biological roles of these proteins, recombinant forms of the proteins were produced. Expression of human recombinant HBNF and MK in Escherichia coli lead to the formation of insoluble aggregated protein that accounted for about 25% of the total cellular protein. Homogeneous, monomeric forms of each protein were recovered from inclusion bodies by reduction with dithiothreitol and solubilization in 8 M urea. Re-folding of the reduced and denatured protein occurred upon dialysis at pH 7.4. Human recombinant (hr) HBNF and hrMK prepared in this manner were further purified by heparin affinity chromatography. Chromatographic evidence demonstrates that refolding and concomitant disulfide bond formation in hrHBNF proceeds in high yield with minimal formation of stable nonnative disulfides. Studies on the redox status of the 10 cysteine residues of bovine brain HBNF and the refolded recombinant protein indicate that all cysteines are engaged in disulfide bond formation. The disulfide arrangements for the recombinant protein were found to be identical to those in the native protein isolated from bovine brain. We also found that correctly folded HBNF and MK inhibit the binding of FGF-2 to its high affinity receptor. Thus, biologic and biochemical evidence suggest that recombinant and tissue-derived HBNF are structurally and functionally equivalent and that function is dependent on proper folding of the proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.