Abstract
Copper cations play fundamental roles in biological systems, such as protein folding and stabilization, or enzymatic reactions. Although copper is essential to the cell, it can become cytotoxic if present in too high concentration. Organisms have therefore developed specific regulation mechanisms towards copper. This is the case of the Pco system present in the bacterium Caulobacter crescentus, which is composed of two proteins: a soluble periplasmic protein PcoA and an outer membrane protein PcoB. PcoA oxidizes Cu+ to Cu2+, whereas PcoB is thought to be an efflux pump for Cu2+. While the PcoA protein has already been studied, very little is known about the structure and function of PcoB. In the present work, PcoB has been overexpressed in high yield in E. coli strains and successfully refolded by the SDS-cosolvent method. Binding to divalent cations has also been studied using several spectroscopic techniques. In addition, a three-dimensional structure model of PcoB, experimentally supported by circular dichroism, has been constructed, showing a β-barrel conformation with a N-terminal disordered chain. This peculiar intrinsic disorder property has also been confirmed by various bioinformatic tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.