Abstract

Introducing deep trackers to thermal infrared (TIR) tracking is hampered by the scarcity of large training datasets. To alleviate the predicament, a common approach is full fine-tuning (FFT) based on pretrained RGB parameters. Nevertheless, due to its inefficient training pattern and representation collapse risk, some parameter-efficient fine-tuning (PEFT) alternatives have been promoted recently. However, the existing PEFT algorithms typically follow a bottom-up way, where their attention solely relies on the input and lacks the capability of task-guided top-down attention, which provides the task-relevant representation such as the human visual perception system. In this article, we introduce ReFocus, a new PEFT method that adapts the pretrained RGB foundation tracking model to the downstream TIR tracking task through the guidance of high-level task-specific signals in a top-down attention manner. By freezing the entire foundation model and only training query-guided feature selection and top-down blocks, ReFocus achieves state-of-the-art (SOTA) TIR tracking performance while keeping training efficiency. Extensive experiments on five TIR tracking benchmarks demonstrate that ReFocus significantly improves the performance of the foundation tracker. Besides, further ablation studies show the effectiveness and flexible adaptability of the proposed method to lighter foundation models and different tracking frameworks. Compared to FFT and other bottom-up PEFT paradigms, such as head probe, low-rank adaptation (LoRA), and adapter, our method achieves comparable or superior performance with fewer training parameters and reveals the advantage of learning stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.