Abstract
In this paper we generalize Artin-Verdier, Esnault and Wunram construction of McKay correspondence to arbitrary Gorenstein surface singularities. The key idea is the definition and a systematic use of a degeneracy module, which is an enhancement of the first Chern class construction via a degeneracy locus. We study also deformation and moduli questions. Among our main result we quote: a full classification of special reflexive MCM modules on normal Gorenstein surface singularities in terms of divisorial valuations centered at the singularity, a first Chern class determination at an adequate resolution of singularities, construction of moduli spaces of special reflexive modules, a complete classification of Gorenstein normal surface singularities in representation types, and a study on the deformation theory of MCM modules and its interaction with their pullbacks at resolutions. For the proof of these theorems it is crucial to establish several isomorphisms between different deformation functors, that we expect that will be useful in further work as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.