Abstract

Various robot navigation methods have been developed, but they are mainly based on Simultaneous Localization and Mapping (SLAM), reinforcement learning, etc., which require prior map construction or learning. In this study, we consider the simplest method that does not require any map construction or learning, and execute open-vocabulary navigation of robots without any prior knowledge to do this. We applied an omnidirectional camera and pre-trained vision-language models to the robot. The omnidirectional camera provides a uniform view of the surroundings, thus eliminating the need for complicated exploratory behaviors including trajectory generation. By applying multiple pre-trained vision-language models to this omnidirectional image and incorporating reflective behaviors, we show that navigation becomes simple and does not require any prior setup. Interesting properties and limitations of our method are discussed based on experiments with the mobile robot Fetch.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.